restart;

with(Riemann):with(Canon):
with (TensorPack) : $\operatorname{CDF}(0): \operatorname{CDS}($ index $)$:
Chapter XX
Tensor analysis using indices - Senovilla et al. - Shearfree for dust
if $\sigma_{a b}=\mathbf{0}=>_{\omega \Theta}=\mathbf{0}$
Author: Peter Huf
file 1

Introduction

The theorem $\sigma_{a b}=0=>\omega \Theta=0$ has been shown using tetrads. There is no complete proof using a $1+3$ covariant formalism.

In this file we follow the equations outlined by
Senovilla, J.M.M., Sopuerta, C.F., Szekeres, P. Theorems on shear-free perfect fluids with their Newtonian analogues, Gen.Rel.Grav, 30, 389-411 (1998)
with the assumptions for dust
i.e $p=0, d u=0$, shear $=0$, viscosity $=0$

1. General results

[Equation 1 (SSSeq1)
[$* ~$
EThe energy stress tensor for a perfect fluidreads:

$$
\begin{gather*}
>E T_{-} P F:=T[-a,-b]=\operatorname{rho} \cdot u[-a] \cdot u[-b]+p \cdot P[-a,-b]: T\left(E T_{-} P F\right) ; \\
T_{a b}=\rho u_{a b}+P p_{a b} \tag{2.1}
\end{gather*}
$$

[where for dust, $\mathrm{p}=0$, and so

$$
\left[\begin{array}{r}
>e q[1]:=\operatorname{subs}(\mathrm{p}=0, \text { ET_PF })): T(e q[1]) ; \\
T_{a b}=\rho u_{a} u_{b} \tag{2.2}
\end{array}\right.
$$

where
u_{a} is the unit velocity vector field
$\rho=$ energy density
p = pressure

Equation 2 Projection tensor and identities (SSSeq2)

$* *$
$>$
The projection tensor, P , is defined as:
$>\operatorname{deq}[1]:=P[-a,-b]=g[-a,-b]+u[-a] \cdot u[-b]: T(\operatorname{deq}[1]) ;$
$P_{a b}=u u_{a b}+g_{a b}$
$>e q[2]:=\operatorname{deq}[1]:$
$P_{a b}$ defines the projection tensor, the projector orthogonal to \mathbf{u}.
ie. $P_{a b}$ creates the component of \mathbf{u} in the direction of \mathbf{b}.
$>$

There are several properties that can be proved from the definition at this point.
[We use known identities:
$\left[\begin{array}{r}>i d[1]:=u[a] \cdot u[-a]=-1: T(i d[1]) ; \\ u^{a} u_{a}=-1\end{array}\right.$
\gg id $[2]:=g[a,-a]=4: T(i d[2]) ;$

$$
\begin{equation*}
g^{a}{ }_{a}=4 \tag{2.5}
\end{equation*}
$$

[Da. Symmetry of the projection tensor:
$>\operatorname{deq}[1]: T(\operatorname{deq}[1])$;

$$
\begin{equation*}
P_{a b}=u u_{a b}+g_{a b} \tag{2.6}
\end{equation*}
$$

[Due to the symmetry of g, we can see immediately that

$$
\begin{array}{r}
>\operatorname{deq}[2 b]:=P[-a,-b]=P[-b,-a]: T(\%) ; \tag{2.7}\\
P_{a b}=P_{b a}
\end{array}
$$

Equations 3abc Other properties of the projection tensor (SSSeqs3abc)

We prove several simple identities related to P :
Firstly we aim to prove SSSeq3b
$>P[a,-a]=3: T(\%)$;

$$
\begin{equation*}
P^{a}{ }_{a}=3 \tag{2.8}
\end{equation*}
$$

[Commencing with the original identity:
> $T($ de $[1])$;

$$
\begin{equation*}
P_{a b}=u u_{a b}+g_{a b} \tag{2.9}
\end{equation*}
$$

LYe raise the index a:

$$
\left[\begin{array}{l}
>\operatorname{deq}[1 b]:=\operatorname{raise}(\operatorname{deq}[1], a): T(\%) ; \\
P^{a}{ }_{b}=u^{a} u_{b}+g^{a}{ }_{b} \tag{2.10}
\end{array}\right.
$$

[and then contract a on b:

$$
\left[\begin{array}{r}
>\operatorname{deq}[1 c]:=\text { contract }(\operatorname{deq}[1 b], b, a): T(\%) ; \\
P{ }^{b}{ }_{b}=u^{b} u_{b}+g^{b}{ }_{b} \tag{2.11}
\end{array}\right.
$$

[We substitute the velocity and metric identies:

$$
\begin{align*}
& >\operatorname{deq}[1 d]:=\operatorname{TELS}(i d[1], \operatorname{deq}[1 c]): T(\operatorname{deq}[1 d]) ; \\
& P^{b}{ }_{b}=-1+g^{b}{ }_{b} \\
& {[>\operatorname{deq}[1 e]:=\operatorname{TELS}(i d[2], \operatorname{deq}[1 d]): T(\%) ;} \\
& P^{b}{ }_{b}=3 \\
& \text { - }> \\
& \text { We move to SSSeq3a } \\
& >\operatorname{SSSeq} 3 a:=P[a,-b] \cdot P[b,-c]=P[a,-c]: T(\%) \text {; } \\
& P^{a}{ }_{b} P^{b}{ }_{c}=P{ }_{c}{ }_{c} \tag{2.14}
\end{align*}
$$

EWe start with the LHS:

$$
\left[\begin{array}{r}
>\operatorname{deq}[3 a]:=P[a,-b] \cdot P[b,-c]: T(\%) ; \\
P^{a}{ }_{b} P^{b}{ }_{c} \tag{2.15}
\end{array}\right.
$$

Substituting identities:

$$
\begin{align*}
& >\operatorname{deq}[3 b]:=\operatorname{TEDS}(\operatorname{deq}[1 b], \operatorname{deq}[3 a]): T(\%) \text {; } \\
& P^{b}{ }_{c}\left(u^{a} u_{b}+g^{a}{ }_{b}\right) \tag{2.16}\\
& {[>\operatorname{deq}[3 d]:=\operatorname{TELS}(\operatorname{deq}[1 b], \operatorname{deq}[3 b]): T(\%) \text {; }} \\
& \left(u^{a} u_{b}+g^{a}{ }_{b}\right)\left(u^{b} u_{c}+g^{b}{ }_{c}\right) \tag{2.17}\\
& =>\operatorname{deq}[3 e]:=\operatorname{expand}(\operatorname{deq}[3 d]): T(\%) \text {; } \\
& u^{a} u^{b} u_{b} u_{c}+g^{a}{ }_{b} u^{b} u_{c}+g{ }^{b}{ }_{c} u^{a} u_{b}+g{ }^{a}{ }_{b} g^{b}{ }_{c} \tag{2.18}\\
& {[>\operatorname{deq}[3 f]:=\operatorname{Absorbg}(\operatorname{deq}[3 e]): T(\%) \text {; }} \\
& u^{a} u^{b} u_{b} u_{c}+2 u^{a} u_{c}+g^{a}{ }_{c} \tag{2.19}\\
& \text { [> id }[1 b]:=u[-b] \cdot u[b]=-1 \text {; } \\
& i d_{b}:=u_{b} u_{-b}=-1 \tag{2.20}\\
& {[>\operatorname{deq}[3 g]:=\operatorname{TEDS}(i d[1 b], \operatorname{deq}[3 f]): T(\%) ;} \\
& u^{a} u_{c}+g^{a}{ }_{c} \tag{2.21}
\end{align*}
$$

leads to
by definition, this is $P^{a}{ }_{c}$
So we add to the array of equations

$$
\begin{array}{r}
>\operatorname{deq}[3 h]:=P[a,-c]=P[a,-b] \cdot P[b,-c]: T(\%) ; \\
P^{a}{ }_{c}=P^{a}{ }_{b} P^{b}{ }_{c} \tag{2.22}
\end{array}
$$

[Now we try to show equation $3 \mathrm{c}: u^{b} P^{a}{ }_{b}=0$
$=>\operatorname{deq}[3 c]:=\operatorname{deq}[1 b] \cdot u[b]: T(\%)$;

$$
\begin{equation*}
u^{b} P_{b}^{a}=u^{b}\left(u^{a} u_{b}+g^{a}{ }_{b}\right) \tag{2.23}
\end{equation*}
$$

$>\operatorname{deq}[3 c]:=\operatorname{expand}(\operatorname{deq}[3 c]): T(\%)$;

$$
\begin{equation*}
u^{b} P^{a}{ }_{b}=u^{a} u^{b} u_{b}+g^{a}{ }_{b} u^{b} \tag{2.24}
\end{equation*}
$$

$$
\begin{equation*}
u^{b} P^{a}{ }_{b}=0 \tag{2.25}
\end{equation*}
$$

$$
[>\operatorname{deq}[3 c]:=\operatorname{Absorbg}(\operatorname{TEDS}(\operatorname{subs}(a=b, \operatorname{id}[1]), \operatorname{deq}[3 c])): e q[3]:=\operatorname{deq}[3 c]:
$$

$$
T(\operatorname{deq}[3 c])
$$

[which proves the equation 3 c .
>
$* *$

[Equation 4- Definition of a time derivative of a tensor

$* *$
[For any vector X , the time derivative

$$
\begin{array}{r}
>e q[4]:=d X[a]=u[b] \cdot X[a,-B]: T(\%) ; \\
d X^{a}=u^{b} X^{a}{ }_{; b} \tag{2.26}
\end{array}
$$

This can apply to any tensor. S
See application to acceleration in eq5

$* *$

[Equation 5 Definition of acceleration

WWe move now to various definitions, firstly for acceleration, du:

$$
\begin{array}{r}
>e q[5]:=d u[a]=u[b] \cdot u[a,-B]: T(\%) \\
d u^{a}=u^{b} u^{a} ; b \tag{2.27}
\end{array}
$$

[and now for various kinematic quatities and relationships:
[$* *$
Equation 6 Decomposition of covariant derivative of velocity
$* *$
$\stackrel{ }{ }$ >

$$
\begin{gather*}
>e q[6]:=u[-a,-B]=\left(\frac{1}{3}\right) \cdot \text { theta } \cdot P[-a,-b]+\operatorname{sigma}[-a,-b]+\text { omega }[-a,-b] \\
-d u[-a] \cdot u[-b]: T(\%) \\
u_{a ; b}=\frac{1}{3} \theta P_{a b}+\sigma_{a b}+\omega_{a b}-d u_{a} u_{b} \tag{2.28}
\end{gather*}
$$

The proof is important and widely used, but is common in the literature and will not be formally proved at this point (for a detailed proof see see Ellis (1970)).
" $* *$
End of page 1 - to equation 6
$\lceil *$
> save deq, "deqs1a";
> save eq, "Seneqs1a";
> read "Seneqs1a" :
$\overline{=}>\operatorname{PrintSubArray}($ eq $, 1,6, y)$;

$$
\begin{gather*}
1, T_{a b}=\rho u_{a} u_{b} \\
2, P_{a b}=u^{u_{a b}}+g_{a b} \\
3, u^{b} P^{a}{ }_{b}=0 \\
4, d X^{a}=u^{b} X^{a}{ }_{; b} \\
5, d u^{a}=u^{b} u^{a}{ }_{; b} \\
6, u_{a ; b}=\frac{1}{3} \theta P_{a b}+\sigma_{a b}+\omega_{a b}-d u_{a} u_{b} \tag{2.29}
\end{gather*}
$$

