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Introduction
The theorem =0 => =0 has been shown using tetrads. There is no complete proof using a 1+3 
covariant formalism.

In this file we follow the equations outlined by

Senovilla, J.M.M., Sopuerta, C.F., Szekeres, P. Theorems on shear-free perfect fluids with their 
Newtonian analogues, Gen.Rel.Grav, 30, 389-411 (1998)  

with the assumptions for dust 
i.e p=0, du=0, shear=0, viscosity=0

1. General results 
*************************************
Equation 1 (SSSeq1)
*************************************
The energy stress tensor for a perfect fluidreads:

where for dust, p=0, and so

where
 is the unit velocity vector field

*************************************
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Equation 2 Projection tensor and identities (SSSeq2)
*************************************

The projection tensor, P, is defined as: 

 defines the projection tensor, the projector orthogonal to u.
i.e. 

There are several properties that can be proved from the definition at this point.

We use known identities:

2a. Symmetry of the projection tensor:

Due to the symmetry of g, we can see immediately that

*************************************
Equations 3abc  Other properties of the projection tensor (SSSeqs3abc)
*************************************

Firstly we aim to prove SSSeq3b

Commencing with the original identity:
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We raise the index a:

and then contract a on b:

We substitute the velocity and metric identies:

We move to SSSeq3a

We start with the LHS:

Substituting identities:
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leads to

by definition, this is 

So we add to the array of equations

Now we try to show equation 3c: 

which proves the equation 3c.

*************************************
Equation 4- Definition of a time derivative of a tensor
*************************************
For any vector X, the time derivative

This can apply to any tensor. S
See application to acceleration in eq5
*************************************
Equation 5 Definition of acceleration
*************************************
We move now to various definitions, firstly for acceleration, du:

 and now for various kinematic quatities and relationships:
*************************************
Equation 6  Decomposition of covariant derivative of velocity
*************************************
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The proof is important and widely used, but is common in the literature and will not be formally 
proved at this point (for a detailed proof see see Ellis (1970)).

*************************************
End of page 1 - to equation 6
*************************************


