[In this file we aim to obtain an expression for the time differentation of SSSeq79.

$$
\left[\begin{array}{r}
>e q[79]:=(\mathrm{mu}+p) \cdot \omega^{2}+W[a, b] \cdot W[-a,-b]=0: T(\%) ; \\
(\mu+p) \omega^{2}+W^{a b} W_{a b}=0 \tag{1.1}
\end{array}\right.
$$

where
temp $1:=W[-a,-b]=\operatorname{symm}(Q[c,-a] \cdot Q[-b, d] \cdot$ omega $[-d,-C],-a,-b)-\frac{1}{2} \cdot Q[-a,-b]$
$\cdot Q[c, d] \cdot o m e g a[-d,-C]: T(\%) ;$

$$
\begin{equation*}
W_{a b}=\frac{1}{2} Q^{c}{ }_{a} Q_{b}{ }^{d} \omega_{d ; c}+\frac{1}{2} Q^{c}{ }_{b} Q_{a}^{d} \omega_{d ; c}-\frac{1}{2} Q_{a b} Q^{c}{ }^{d} \omega_{d ; c} \tag{1.2}
\end{equation*}
$$

Land

$$
\begin{gather*}
>\text { temp } 2 a:=Q[-a,-b]=\frac{\text { omega }[-a, c] \cdot \text { omega }[-b,-c]}{\omega^{2}}: T(\%) ; \\
Q_{a b}=\frac{\omega_{a}{ }^{c} \omega_{b c}}{\omega^{2}} \tag{1.3}
\end{gather*}
$$

Note that Q is the projector orthogonal to both u and omega
We use the identity eq 14:
$>$ temp $2 b:=\operatorname{subs}(b=-b,-\operatorname{TEDS}($ omega $[-c, b]=-$ omega $[b,-c]$, eq $[14])): T(\%) ;$

$$
\begin{equation*}
\omega_{a}^{c} \omega_{b c}=P \omega_{a b}^{2}-\omega \omega_{a b} \tag{1.4}
\end{equation*}
$$

temp $2:=\operatorname{expand}(T E D S($ temp $2 b$, temp $2 a)): T(\%) ;$

$$
\begin{equation*}
Q_{a b}=P_{a b}-\frac{\omega_{a} \omega_{b}}{\omega^{2}} \tag{1.5}
\end{equation*}
$$

- $>$
and furthermore
$\stackrel{>}{=}$ eq[80]:=dotQ[-a,-b]=0:T(\%);

$$
\begin{equation*}
\operatorname{dot} Q_{a b}=0 \tag{1.6}
\end{equation*}
$$

Firstly
$>$ temp $3:=\operatorname{dot} T(e q[79]): T(\%)$;

$$
\begin{equation*}
(\text { dotmu }+\operatorname{dotp}) \omega^{2}+2(\mu+p) \omega \text { dotomega }+W^{a b} \operatorname{dot} W_{a b}+\operatorname{dot} W^{a b} W_{a b}=0 \tag{1.7}
\end{equation*}
$$

so we need an expression for $\operatorname{dotW}[\mathrm{a}, \mathrm{b}]$
temp $4:=\operatorname{TEDS}(\operatorname{dot} Q[c, d]=0, \operatorname{TEDS}(\operatorname{dot} Q[-a,-b]=0, \operatorname{TEDS}(\operatorname{dot} Q[-a, d]=0$,
$\operatorname{TEDS}(\operatorname{dot} Q[c,-b]=0, \operatorname{TEDS}(\operatorname{dot} Q[-b, d]=0, \operatorname{TEDS}(\operatorname{dot} Q[c,-a]=0$, $\operatorname{dot}($ (temp1)))))) : $T(\%)$;
$\operatorname{dot} W_{a b}=\frac{1}{2} Q^{c}{ }_{a} Q_{b}{ }^{d}$ dotomega $_{d ; c}+\frac{1}{2} Q^{c}{ }_{b} Q_{a}{ }^{d}$ dotomega $_{d ; c}$ $-\frac{1}{2} Q_{a b} Q^{c d}$ dotomega ${ }_{d ; c}$
-
from kinematic quantities:
temp $5:=$ dotomega $[-a,-C]=1 / 9 *$ theta^2* omega $[-c] * u[-a]+1 / 3 *$ theta $d u[-f]$ * omega $[f] * u[-a]^{*} u[-c]-d u[-c]^{*} d u[-f] *$ omega $[f] * u[-a]+1 / 3 * P[-c,-a]$ * omega $[f] *$ theta $[-F]-1 / 3 *$ theta $[-A]^{*}$ omega $[-c]-d u[-c,-F] *$ omega $[f] * u[-a]$ + omega $[f] *$ omega $[-c,-a,-F]$-omega $[f] *$ omega $[-c,-f,-A]+u[d] *$ omega $[-a,-\mathrm{D}$, - C] : $T(\%)$;
dotomega $a_{a ; c}=\frac{1}{9} \theta^{2} \omega_{c} u_{a}+\frac{1}{3} \theta d u_{f} \omega^{f} u_{a} u_{c}-d u_{c} d u_{f} \omega^{f} u_{a}+\frac{1}{3} P_{c a} \omega^{f} \theta_{; f}$ $-\frac{1}{3} \theta_{; a} \omega_{c}-d u_{c ; f} \omega^{f} u_{a}+\omega^{f} \omega_{c a ; f}-\omega^{f} \omega_{c f ; a}+u^{d} \omega_{a ; d ; c}$
temp $6:=\operatorname{expand}(\operatorname{TEDS}(\operatorname{subs}(b=-d$, temp 2$), \operatorname{TEDS}(\operatorname{subs}(a=-c$, temp2) $) \operatorname{TEDS}(\operatorname{subs}(b=-d$, $a=b$, temp 2$), \operatorname{TEDS}(\operatorname{subs}(a=-c, b=a$, temp 2$), \operatorname{TEDS}(\operatorname{subs}(a=-c, b=-d$, temp2), expand(TELS(temp2, temp4)))))))):T(\%);
$\operatorname{dot} W_{a b}=-\frac{1}{2}$ dotomega $_{d ; c} P^{c}{ }^{d} P_{a b}+\frac{1}{2}$ dotomega $_{d ; c} P^{c}{ }_{a} P_{b}{ }^{d}$ $+\frac{1}{2}$ dotomega $_{d ; c} P^{c}{ }_{b} P_{a}{ }^{d}+\frac{1}{2} \frac{\text { dotomega }_{d ; c} P^{c d} \omega_{a} \omega_{b}}{\omega^{2}}$ $-\frac{1}{2} \frac{\text { dotomega }{ }_{d ; c} P^{c}{ }_{a} \omega^{d} \omega_{b}}{\omega^{2}}-\frac{1}{2} \frac{{\text { dotomeg } a_{d ; c} P{ }^{c}{ }_{b} \omega^{d} \omega_{a}}_{\omega^{2}}{ }^{2}}{}$ $-\frac{1}{2} \frac{\text { dotomega }_{d ; c} P_{a}{ }^{d} \omega^{c} \omega_{b}}{\omega^{2}}+\frac{1}{2} \frac{\text { dotomega }_{d ; c} P_{a b} \omega^{c} \omega^{d}}{\omega^{2}}$ $-\frac{1}{2} \frac{\text { dotomega }_{d ; c} P_{b}{ }^{d} \omega^{c} \omega_{a}}{\omega^{2}}+\frac{1}{2} \frac{\text { dotomega }_{d ; c} \omega^{c} \omega^{d} \omega_{a} \omega_{b}}{\omega^{4}}$
$=$
temp $7:=\operatorname{Absorbg}(\operatorname{TELS}(P[-c,-d]=g[-c,-d]+u[-c] \cdot u[-d], \operatorname{expand}(\operatorname{TELS}(P[c, d]$ $=g[c, d]+u[c] \cdot u[d], \operatorname{expand}($ temp 6$))))): T(\%)$;
$\operatorname{dot} W_{a b}=\frac{1}{2} \frac{\text { dotomega }_{d ; c} \omega^{c} \omega^{d} \omega_{a} \omega_{b}}{\omega^{4}}+\frac{1}{2} u^{c} u^{d} u_{a} u_{b}$ dotomega $_{d ; c}$

$$
\stackrel{L}{\square}
$$

Eincomplete

$$
\begin{aligned}
& +\frac{1}{2} \frac{{\text { dotomeg } a_{d ; c} \omega^{c} \omega^{d} g_{a b}}_{\omega^{2}}-\frac{1}{2} \frac{\text { dotomega }_{b ; c} \omega^{c} \omega_{a}}{\omega^{2}}}{} \\
& +\frac{1}{2} \frac{\text { dotomega }_{d}{ }^{; d} \omega_{a} \omega_{b}}{\omega^{2}}-\frac{1}{2} \frac{\left.{\text { dotomeg } a_{d ; a} \omega^{d} \omega_{b}}_{\omega^{2}}-\frac{1}{2} \frac{\text { dotomega }_{d ; b} \omega^{d} \omega_{a}}{\omega^{2}} .\right\}}{} \\
& -\frac{1}{2} \frac{\text { dotomeg } a_{a ; c} \omega^{c} \omega_{b}}{\omega^{2}}+\frac{1}{2} \frac{\text { dotomega }_{d ; c} \omega_{a} \omega_{b} u^{c} u^{d}}{\omega^{2}} \\
& -\frac{1}{2} \frac{\text { dotomega }_{d ; c} \omega^{d} \omega_{b} u^{c} u_{a}}{\omega^{2}}-\frac{1}{2} \frac{\text { dotomega }_{d ; c} \omega^{d} \omega_{a} u^{c} u_{b}}{\omega^{2}} \\
& -\frac{1}{2} \frac{\text { dotomega }_{d ; c} \omega^{c} \omega_{b} u^{d} u_{a}}{\omega^{2}}+\frac{1}{2} \frac{\text { dotomega }_{d ; c} \omega^{c} \omega^{d} u_{a} u_{b}}{\omega^{2}} \\
& -\frac{1}{2} \frac{\text { dotomega }_{d ; c} \omega^{c} \omega_{a} u^{d} u_{b}}{\omega^{2}}+\frac{1}{2} u^{c} u_{b} \text { dotomega }_{a ; c} \\
& +\frac{1}{2} u^{d} u_{a} \text { dotomeg }_{d ; b}-\frac{1}{2} g_{a b} u^{c} u^{d} \text { dotomega }_{d ; c}-\frac{1}{2} u_{a} u_{b} \text { dotomega }{ }_{d}{ }^{; d} \\
& +\frac{1}{2} u^{c} u_{a} \text { dotomega }_{b ; c}+\frac{1}{2} u^{d} u_{b} \text { dotomega }_{d ; a}-\frac{1}{2} g_{a b} \text { dotomega }_{d}{ }^{; d} \\
& +\frac{1}{2} g_{b}{ }^{d} \text { dotomega }_{d ; a}+\frac{1}{2} g_{a}{ }^{d} \text { dotomega }_{d ; b}
\end{aligned}
$$

