```
[> restart;with(Riemann):with(Canon):with(TensorPack): CDF(0); CDS(index):
-> read "EFE": read "SFE":read "fids":read "seneqs80":
Chapter XX
Using Ricci Identities
Author: Peter Huf
Riemann tensor (file 3): contraction with u[d]
SSSEq80 - completed
```

$$
\begin{align*}
& \begin{array}{l}
>\text { eq }[80]:=\operatorname{dot} Q[-a,-b]=0: T(\%) ; \\
\\
\text { dot } Q_{a b}=0
\end{array} \\
& {\left[\begin{array}{l}
\text { where } \\
>\operatorname{defn}:=Q[-a,-b]=\frac{\text { omega }[-a, c] \cdot \text { omega }[-b,-c]}{\omega^{2}}: T(\%) ; \\
Q_{a b}=\frac{\omega_{a}{ }^{c} \omega_{b c}}{\omega^{2}}
\end{array}\right.} \tag{1.1}
\end{align*}
$$

Note that Q is easily seen as the the projector orthogonal to both u and omega

$$
\begin{align*}
& > \\
& \text { temp } 2:=\operatorname{dot} T(\operatorname{defn}): T(\%) ; \\
& \operatorname{dot} Q_{a b}=\frac{\text { dotomega } a_{a}{ }^{c} \omega_{b c}}{\omega^{2}}+\frac{\omega_{a}{ }^{c} \text { dotomeg } a_{b c}}{\omega^{2}}-\frac{2 \omega_{a}{ }^{c} \omega_{b c} \text { dotomega }}{\omega^{3}} \tag{1.3}\\
& \text { }> \\
& {\left[\text { dotomega } a_{a b}=\theta \omega_{a b} p^{\prime}-\frac{2}{3} \theta \omega_{a b}+u_{a} d u^{c} \omega_{c b}+u_{b} d u^{d} \omega_{a d}\right.} \\
& \begin{array}{l}
> \\
>\text { temp } 3:=\text { dotomeg } a[-a,-b]=\text { theta } \cdot \omega[-a,-b] \text {. } \\
\quad-b]+u[-b] \cdot d u[d] \cdot \omega[-a,-d]: T(\%) ;
\end{array} \\
& \text { dotomega } a_{a b}=p^{\prime} \theta \omega_{a b}-\frac{2}{3} \theta \omega_{a b}+u_{a} d u^{c} \omega_{c b}+u_{b} d u^{d} \omega_{a d} \tag{1.4}
\end{align*}
$$

[with the assumptions:
temp $3 a:=\operatorname{TEDS}(d u[d] \cdot$ omega $[-a,-d]=0, \operatorname{TEDS}(d u[c] \cdot$ omega $[-c,-b]=0$, temp 3$))$: $T(\%) ;$

$$
\begin{equation*}
\text { dotomega }_{a b}=p^{\prime} \theta \omega_{a b}-\frac{2}{3} \theta \omega_{a b} \tag{1.5}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{dot} Q_{a b}=\frac{\omega_{a}{ }^{c} \omega_{b c} \theta p^{\prime}}{\omega^{2}}-\frac{2}{3} \frac{\omega_{a}{ }^{c} \omega_{b c} \theta}{\omega^{2}}+\frac{\omega_{a}{ }^{c} \text { dotomega }_{b c}}{\omega^{2}} \tag{1.6}\\
& -\frac{2 \omega_{a}{ }^{c} \omega_{b c} \text { dotomega }}{\omega^{3}} \\
& \text { temp } 5:=\operatorname{expand}(\operatorname{TEDS}(\operatorname{subs}(b=c, a=b, \text { temp } 3 a), \text { temp } 4)): T(\%) \text {; } \\
& \operatorname{dot} Q_{a b}=\frac{2 \omega_{a}{ }^{c} \omega_{b c} \theta p^{\prime}}{\omega^{2}}-\frac{4}{3} \frac{\omega_{a}{ }^{c} \omega_{b c} \theta}{\omega^{2}}-\frac{2 \omega_{a}{ }^{c} \omega_{b c} \text { dotomega }}{\omega^{3}} \tag{1.7}\\
& \overline{\bar{\prime}}>\text { temp } 6:=\text { dotomega }=\theta \cdot \omega \cdot{ }^{\prime} p^{\prime \prime}-\frac{2}{3} \cdot \theta \cdot \omega: T(\%) \text {; } \\
& \text { dotomega } a=\theta p^{\prime} \omega-\frac{2}{3} \theta \omega \tag{1.8}\\
& \text { temp } 7:=\operatorname{expand}(T E D S(\text { temp } 6, \text { temp } 5)): T(\%) ; \\
& \operatorname{dot} Q_{a b}=0 \tag{1.9}\\
& \text { Eproof completed }
\end{align*}
$$

